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Evolutionary studies of genes that have been functionally characterized and whose variation has been
associated with pathological conditions represent an opportunity to understand the genetic basis of
pathologies. a2-Adrenoreceptors (ADRA2) are a class of G protein-coupled receptors that regulate several
physiological processes including blood pressure, platelet aggregation, insulin secretion, lipolysis, and
neurotransmitter release. This gene family has been extensively studied from a molecular/physiological
perspective, yet much less is known about its evolutionary history. Accordingly, the goal of this study was
to investigate the evolutionary history of a2-adrenoreceptors (ADRA2) in vertebrates. Our results show
that in addition to the three well-recognized a2-adrenoreceptor genes (ADRA2A, ADRA2B and
ADRA2C), we recovered a clade that corresponds to the fourth member of the a2-adrenoreceptor gene
family (ADRA2D). We also recovered a clade that possesses two ADRA2 sequences found in two lamprey
species. Furthermore, our results show that mammals and crocodiles are characterized by possessing
three a2-adrenoreceptor genes, whereas all other vertebrate groups possess the full repertoire of a2-
adrenoreceptor genes. Among vertebrates ADRA2D seems to be a dispensable gene, as it was lost two
independent times during the evolutionary history of the group. Additionally, we found that most exam-
ined species possess the most common alleles described for humans; however, there are cases in which
non-human mammals possess the alternative variant. Finally, transcript abundance profiles revealed that
during the early evolutionary history of gnathostomes, the expression of ADRA2D in different taxonomic
groups became specialized to different tissues, but in the ancestor of sarcopterygians this specialization
would have been lost.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Evolutionary studies of gene families that have been function-
ally characterized and whose variation has been linked to patho-
logical conditions in humans represent an opportunity to
understand the genetic basis of pathologies. Comparative studies
have revealed that non-model species harbor genetic variation that
could be relevant to understanding the physiological function of
molecules that play key roles in health and disease (Opazo et al.,
2005; Albertson et al., 2009; Yu et al., 2011; Edrey et al., 2012;
Henning et al., 2014; Faulkes et al., 2015; Wichmann et al., 2016;
Zavala et al., 2017). Studies carried out in non-model species that
are resistant to diseases that have caused a high number of human
deaths have been particularly important (e.g. Alzheimer, cancer)
(Gorbunova et al., 2012; Castro-Fuentes and Socas-Pérez, 2013;
Manov et al., 2013; Henning et al., 2014; Braidy et al., 2015;
Faulkes et al., 2015; Inestrosa et al., 2015).

Adrenoceptors are a class of G protein-coupled cell membrane
receptors that are mediators in the sympathetic nervous system.
They regulate physiological functions to maintain homeostasis by
mediating the action of catecholamines such as epinephrine and
norepinephrine. There are two groups of adrenergic receptors, a
and b, and there are several subtypes in each group. Within the
a-type, the a2-adrenoreceptors (ADRA2) are composed of three
subtypes: ADRA2A, ADRA2B and ADRA2C (Bylund, 1988). They
are mainly expressed in the nervous system and platelets and reg-
ulate several key physiological processes including blood pressure,
platelet aggregation, insulin secretion, lipolysis, and neurotrans-
mitter release (Knaus et al., 2007). They also play significant roles
during development as the deletion of the three a2-adrenoreceptor
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genes results in embryonic lethality (Philipp et al., 2002). At the
individual level, the a2A-adrenoreceptors (ADRA2A) mediate inhi-
bition of insulin release (Gribble, 2010; Rosengren et al., 2010),
hypotension, bradycardia, baroreceptor reflex sensitivity, sedation,
and hypnosis (MacMillan et al., 1996; Lakhlani et al., 1997;
Niederhoffer et al., 2004). The a2B-adrenoreceptors (ADRA2B) play
important roles in the regulation of vascular tone (Link et al., 1996)
as well as in the development of the placenta (Muthig et al., 2007)
and lungs (Haubold et al., 2010). The a2C-adrenoreceptors
(ADRA2C) control the secretion of epinephrine via an autocrine
feedback loop in the adrenal medulla (Brede et al., 2002, 2003;
Gilsbach et al., 2007). In the past, a fourth type of ADRA2 receptor
was described (ADRA2D) based on pharmacological assays
(Bylund, 2005). This fourth type of receptor was initially identified
in rat, mouse, and cow and was mainly characterized as having a
low affinity for yohimbine and rauwolscine. However, subsequent
studies have revealed that this receptor in these species would not
be a fourth type of a2-adrenoreceptor; instead it would be an
ADRA2A type of receptor with divergent pharmacological proper-
ties (Lanier et al., 1991; Link et al., 1992). Thus, a2-
adrenoreceptor gene family is a group of cell membrane receptors
that plays significant physiological roles from embryogenesis to
adulthood that would be greatly benefited of having evolutionary
information.

Accordingly, the main goal of this study was to unravel the evo-
lutionary history of a2-adrenoreceptors (ADRA2) in vertebrates. To
do so we annotated a2-adrenoreceptor (ADRA2) genes in species
representative of all main groups of vertebrates. Using phyloge-
netic and syntenic approaches, we defined the composition of the
gene family, orthologous relationships within each family member,
and patterns of differential retention. We studied genetic variabil-
ity in non-model species related to humans; specifically, we ana-
lyzed variability at sites known to have consequences in human
health. Finally, we also evaluated transcription abundance profiles
among different tissues in representative species of vertebrates.
Our results show that in addition to the three well-recognized
a2-adrenoreceptor genes (ADRA2A, ADRA2B and ADRA2C), we
recovered a clade that corresponds to the fourth member of the
a2-adrenoreceptor gene family (ADRA2D). We also recovered a
clade that possesses two a2-adrenoreceptor sequences found in
two species of lampreys. Based on the phyletic distribution of the
genes, we show that mammals and crocodiles are characterized
by possessing three a2-adrenoreceptor genes, whereas all other
vertebrate groups possess the full repertoire of four a2-
adrenoreceptor genes. The most dispensable a2-adrenoreceptor
gene seems to be the ADRA2D gene as it was lost two independent
times during the evolutionary history of vertebrates. We found
that most examined species possess the most common alleles
described for humans. There is a group of sites for which some spe-
cies possess the most common allele, whereas others possess the
alternative allele. There is one position for which the rare allele
is present in all non-human species, and there are some cases in
which novel alleles are present. Finally, transcript abundance pro-
files revealed that during the early evolutionary history of gnathos-
tomes, the expression of ADRA2D in different taxonomic groups
became specialized to different tissues, but in the ancestor of sar-
copterygians this specialization would have been lost.
2. Materials and methods

2.1. DNA data and phylogenetic analyses

We used bioinformatic procedures to annotate a2-
adrenoreceptor genes in species of all major groups of chordates.
Our sampling included species from mammals, birds, reptiles,
amphibians, coelacanths, teleost fish, holostean fish, cartilaginous
fish, cyclostomes, urochordates and cephalochordates (Supple-
mentary Table S1). We also included sequences of the dopamine
receptors D (DRD) 1, 2, 3, 4 and 5, and b-adrenoreceptors (ADRB)
1, 2 and 3 from humans (Supplementary Table S1). Amino acid
sequences were aligned using the FFT-NS-i strategy from MAFFT
v.6 (Katoh and Standley, 2013). We used the proposed model tool
of IQ-Tree (Trifinopoulos et al., 2016) to select the best-fitting
model of amino acid substitution (JTT + R6). Phylogenetic relation-
ships were estimated according to maximum likelihood approach.
We performed a maximum likelihood analysis to obtain the best
tree using the program IQ-Tree (Trifinopoulos et al., 2016) and
assessed support for the nodes with 1000 bootstrap pseudorepli-
cates using the ultrafast routine. Human ADRA1A, B, and D
sequences were used as outgroups.

2.2. Assessments of conserved synteny

We examined genes found upstream and downstream of the a2-
adrenoreceptor genes of species representative of all main groups
of vertebrates. We used the estimates of orthology and paralogy
derived from the EnsemblCompara database (Herrero et al.,
2016); these estimates are obtained from an automated pipeline
that considers both synteny and phylogeny to generate orthology
mappings. These predictions were visualized using the program
Genomicus v86.01 (Louis et al., 2015). Our analyses were per-
formed in humans (Homo sapiens), opossum (Monodelphis domes-
tica), chinese turtle (Pelodiscus sinensis), chicken (Gallus gallus),
anole lizard (Anolis carolinensis), clawed frog (Xenopus tropicalis),
coelacanth (Latimeria chalumnae), spotted gar (Lepisosteus oculatus)
and elephant shark (Callorhinchus milii). In the case of the elephant
shark (http://esharkgenome.imcb.a-star.edu.sg/), the genomic
pieces containing ADRA2 genes were annotated, and predicted
genes were then compared with the non-redundant protein data-
base using Basic Local Alignment Search Tool (BLAST) (Altschul
et al., 1990).

2.3. Transcript abundance assessment

a2-Adrenoreceptor transcript abundance was measured in the
elephant shark, spotted gar, chicken, and human. For each species,
ADRA2 expression was assessed in six different tissues (brain,
heart, kidney, liver, muscle, and testis). RNASeq data was gathered
from GenBank’s SRA database (Supplementary Table S2). Predicted
coding sequences from each genome were collected from Ensembl
where only the longest transcript was used to represent each gene.
Elephant shark cDNA sequences were collected from the elephant
shark genome web site (http://esharkgenome.imcb.a-star.edu.sg/).
The presence of the ADRA2 paralogs was verified prior to read
mapping. If ADRA2 sequences were missing or Ensembl’s predic-
tions were not identical to ours, the Ensembl sequence was
replaced. Gene expression levels were estimated using RSEM
v1.2.31 (Li and Dewey, 2011) which employs Bowtie v. 1.1.2
(Langmead et al., 2009) to map reads to the proper set of coding
sequences. Default settings were used, and expression was mea-
sured in transcripts per million (TPM).
3. Results and discussion

3.1. Gene trees, synteny analyses, and orthology

We constructed a phylogenetic tree in which we included
ADRA2 sequences of representative species of all major groups of
chordates. Our phylogenetic analyses recovered the monophyly
of the ADRA2 sequences with strong support (Fig. 1). Within the
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Fig. 1. Maximum likelihood tree depicting evolutionary relationships among a2-adrenoreceptors. Numbers on the nodes correspond to maximum likelihood ultrafast
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chordate group, the cephalochordate clade was recovered sister to
the ADRA2 sequences from olfactores, the group that includes ver-
tebrates and urochordates (Fig. 1). In addition, the clade that
includes urochordate sequences was recovered sister to the ADRA2
sequences from vertebrates (Fig. 1). Within the vertebrate clade,
we recovered five monophyletic groups that correspond to the
three already well characterized a2-adrenoreceptor genes
(ADRA2A, ADRA2B and ADRA2C), a clade that corresponds to the
fourth member of the a2-adrenoreceptor gene family (ADRA2D),
and in agreement with previous studies a single clade that contains
the ADRA2 sequences of two lamprey species (Yamamoto and
Vernier, 2011) (Fig. 1). It is important to note that the ADRA2D
clade we identified in our phylogenetic analyses does not corre-
spond to the clade that includes the a2-adrenoreceptor gene of
rat, mouse and cow that in the past was named ADRA2D
(Bohmann et al., 1994; Kobayashi et al., 2004; Bylund, 2005). The
use of the name ADRA2D to refer to the clade including the a2-
adrenoreceptor gene of rat, mouse, and cow was assigned based
on pharmacological assays; specifically, lower affinity of yohim-
bine and rauwolscine for the receptor. Homology, however, is an
evolutionary concept that is related but not based on functionality
(Gabaldón, 2008; Gabaldón and Koonin, 2013). Subsequent studies
have revealed that what was called a2D-adrenoreceptor (ADRA2D)
in rat and mouse in actuality is not a fourth type of a2-
adrenoreceptor; instead it is an ortholog to the a2A-
adrenoreceptor (ADRA2A) of other mammals (Lanier et al., 1991;
Link et al., 1992). An amino acid alignment including all members
of the gene family shows that the most divergent regions are the
N-terminal region, before the first transmembrane domain, and
the third intracellular loop. Further, most of the amino acid posi-
tions that distinguish each paralog are located in the third intracel-
lular loop, a region that is critical for G protein coupling and
kinase-mediated regulation of G protein-coupled receptors (Sup-
plementary Fig. S1) (DeGraff et al., 2002; Ahles and Engelhardt,
2014)

Within the ADRA2 clade, phylogenetic relationships among dif-
ferent members of the gene family are also well supported (Fig. 1).
We recovered a monophyletic group containing the ADRA2A and
lamprey clades, which in turn was recovered as sister to the
ADRA2B sequences (Fig. 1). The monophyletic group including
ADRA2C sequences was recovered as sister to the aforementioned
clade (Fig.1), whereas the ADRA2D clade was recovered as sister to
all other ADRA2 groups (Fig. 1). In agreement with previous results,
the clade that includes dopamine receptors (DRD) 2, 3 and 4 was
recovered as sister to the ADRA2 clade (Spielman et al., 2015;
Zavala et al., 2017). Although we expected dopamine receptors
(DRD) 1 and 5 to be sister to the b-adrenoreceptors (ADRB)
(Spielman et al., 2015; Zavala et al., 2017), this was not the case.
This could mainly be due to the fact that the sampling effort per-
formed in this study was not aimed at resolving the evolutionary
relationship among these genes. The synteny analyses gave further
support for the identity of the four a2-adrenoreceptor clades iden-
tified for all of the main groups of gnathostomes (Fig. 2). Although
we found variation in the pattern of conservation of genes found
up- and downstream of the ADRA2 genes, in all cases it is possible
to realize that each ADRA2 gene is located in a chromosomal loca-
tion that is more or less conserved in all examined species (Fig. 2).
For example, in the case of the ADRA2A gene, there are four
upstream genes (SHOC2, BBIP1, PDCD4 and RBM20) and five
downstream genes (GPAM, TECTB, ACSL5, ZDHHC6 and VTI1A) that
are well conserved in most examined species (Fig. 2); this suggests
that this gene arrangement was present in the common ancestor of
the group between 615 and 473 million years ago and was inher-
ited by all descendant lineages. It is worth noting that the genomic
region where the ADRA2D gene is located is also conserved in spe-
cies that lost the gene (e.g. humans; Fig. 2).
From the phylogenetic analyses it was possible to define orthol-
ogy among the gnathostome sequences, however, for lamprey
sequences this was more difficult (Fig. 1). Although our phyloge-
netic tree recovered lamprey sequences sister to the ADRA2A clade,
this should be taken with caution as genome-wide analyses have
shown that lamprey genomes possess compositional bias (Qiu
et al., 2011; Kuraku, 2013; Mehta et al., 2013; Smith et al., 2013)
that makes it difficult to recover the true evolutionary history of
genes using phylogenetic inference. In support of this idea, other
studies working with different gene families have also noted this
difficulty (Qiu et al., 2011; Nah et al., 2014; Campanini et al.,
2015; Opazo et al., 2015; Wichmann et al., 2016; Zavala et al.,
2017). We also explored the genomic piece in which we found
the ADRA2 gene in the sea lamprey to determine if syntenic genes
could be found that would help us to define orthology. In principle,
if we found syntenic genes in lampreys that have a human ortholog
located in one of the chromosomes where the ADRA2 genes are
located, we could suggest orthology. In our analyses, we found
two genes (RNF122 and C20orf27) on the 30 side of the sea lamprey
ADRA2 gene; unfortunately, neither of these genes had an ortholog
on a human chromosome where ADRA2 genes are located. The
RNF122 gene is located on human chromosome 8, while
C20orf27 is located on human chromosome 20.

3.2. Diversification and differential retention of ADRA2 genes during
the evolutionary history of vertebrates

In this study we identified four types of a2-adrenoreceptors in
species representative of all of the main groups of vertebrates
(ADRA2A, ADRA2B, ADRA2C and ADRA2D; Fig. 1). The phyletic dis-
tribution of the a2-adrenoreceptors found here suggests that the
last common ancestor of the group, which existed between 676
and 615 million years ago, possessed the full repertoire of a2-
adrenoreceptors observed in extant species. However, given that
the last common ancestor of vertebrates underwent two rounds
of whole genome duplication (Ohno et al., 1968; Meyer and
Schartl, 1999; McLysaght et al., 2002; Dehal and Boore, 2005;
Hoegg and Meyer, 2005; Putnam et al., 2008), it is possible that
at some point in time the vertebrate ancestor had just one ADRA2
gene, which after the two rounds of whole genome duplication
gave rise to the actual repertoire of four genes. In support of this
idea, the a2-adrenoreceptor gene family appears in the repository
of genes that were retained after the whole genome duplications
occurred in the vertebrate ancestor (Singh et al., 2015). This pat-
tern of gene diversification has also been observed for other gene
families (Blomme et al., 2006; Hoffmann and Opazo, 2011;
Hoffmann et al., 2012; Storz et al., 2013; Wichmann et al., 2016;
Zavala et al., 2017), highlighting the pivotal role of whole genome
duplication in the origin of biological diversity.

After the repertoire of four a2-adrenoreceptor genes was estab-
lished, vertebrate groups retained different complements of a2-
adrenoreceptor genes (Fig. 3). According to our assessment, all
but two groups retained the full complement of a2-
adrenoreceptor genes (Fig. 3). Only mammals and crocodiles
retained three family members (Fig. 3), and in both cases the lost
gene was the a2D-adrenoreceptor gene (ADRA2D; Fig. 3). The fact
that our survey included species representative of all main groups
of mammals provides support to the conclusion that the ADRA2D
gene was lost in the ancestor of the group. In the case of crocodiles,
although we surveyed fewer species, the crocodiles species sam-
pled are also distributed in all major lineages of the group, also
suggesting that the gene loss occurred in the ancestor of the group.
Additionally, given that the groups that do not possess ADRA2D are
not sister to each other, the most parsimonious scenario to explain
the lack of this gene in both groups would be two independent
gene losses in the common ancestors of each group. It is possible
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Fig. 3. Phyletic distribution of a2-adrenoreceptor genes in gnathostomes.
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to suggest that for mammals and crocodiles just having three
members of the gene family is enough to maintain all biological
functions associated with this group of genes. This could be
explained assuming that there is some degree of redundancy that
works as a backup (i.e. functionally overlapping paralogues) in
the event that one of the genes is lost or inactivated (Gitelman,
2007; Cañestro et al., 2009; Félix and Barkoulas, 2015; Albalat
and Cañestro, 2016). Thus, the differential retention of a2-
adrenoreceptor genes could be seen as a stochastic process, in
which the observed differences in gene repertoires do not neces-
sarily translate into functional consequences. However, it is also
possible that the retention of multiple (redundant) gene copies
could help to direct the trajectory of physiological evolution by
providing an increased opportunity for the origin of biological nov-
elties (Ohno et al., 1968; Ohno, 1970; Force et al., 1999; Hughes,
1994; Zhang, 2003).

The diversification of the a2-adrenoreceptor genes in teleost
fish deserves a special mention given that the last common ances-
tor of this group underwent an extra round of whole genome
duplication in comparison to other vertebrates (Meyer and Van
de Peer, 2005; Kasahara, 2007; Sato and Nishida, 2010). Given this,
one could expect to find duplicated copies of all a2-adrenoreceptor
gene lineages in teleost fish compared to the spotted gar, a holos-
tean fish species that did not experience the extra round of whole
genome duplication. In this case, special attention should be paid
to synteny, given that the asymmetric loss of duplicates could
cause one to misinterpret paralogy as orthology i.e. hidden paral-
ogy (Daubin et al., 2001; Martin and Burg, 2002; Kuraku, 2013;
Kuraku et al., 2016). According to our phylogenetic tree, duplicated
lineages were found in three (ADRA2A, ADRA2C and ADRA2D) out
of four a2-adrenoreceptor genes (Fig. 4). In the case of ADRA2B, our
phylogenetic analyses allowed us to identify one a2-
adrenoreceptor gene lineage in nine species of teleost fish
(Fig. 4). Synteny analyses provided extra support for the identity
of this group of sequences as a gene lineage as we identified two
genes upstream (GPAT2 and FAHD2A) and one downstream
(DUSP2) that are conserved in most species. The presence of a sin-
gle ADRA2B gene lineage in this group of teleost fish suggests that
the loss of the other occurred early in the evolutionary history of
teleost fish.

3.3. a2-Adrenoreceptor polymorphisms in species related to humans

Although there are several polymorphisms described for the a2-
adrenoreceptor genes, in this work we only studied the variants
that have been functionally characterized (Ahles and Engelhardt,
2014). Screening species closely related to humans could poten-
tially shed light on the functional role of a2-adrenoreceptor gene
variation. Especially important are the cases in which all closely
related species possess the (alternative) allele that is associated
with given pathological conditions in humans. This situation could
indicate that the specific position of the allele itself does not pro-
duce the human pathological condition, rather pathology depends
on the identity at other amino acid positions within the molecule
(Breen et al., 2012; Natarajan et al., 2013).

In our survey, we compared polymorphisms that have been
described and functionally characterized in humans in a panel of
species that includes anthropoid primates and rodents (Table 1).
We found that most examined species possess the most common
alleles described for humans (Table 1). There is also a group for
which some species possess the most common allele, whereas
others possess the alternative allele (Table 1). Additionally, we
found one position for which the rare allele is present in all non-
human species (Table 1), and there are some cases in which novel
alleles are present (Table 1). The most interesting case is the poly-
morphism located approximately 70 kb (rs869244) downstream of



Fig. 4. Maximum likelihood trees depicting evolutionary relationships among a2-
adrenoreceptors in fish. A) phylogenetic relationships among ADRA2A sequences;
B) phylogenetic relationships among ADR2B sequences; C) phylogenetic relation-
ships among ADRA2C sequences; D) phylogenetic relationships among ADRA2D
sequences. Numbers on the nodes correspond to maximum likelihood ultrafast
bootstrap support values. These tree topologies do not represent novel phylogenetic
analyses; they are the fish clades that were recovered from Fig. 1.
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the ADRA2A locus (Table 1). In genome-wide association studies
(GWAS) this polymorphism has been associated with platelet
aggregation, a physiological response to vessel injury, in response
to three different agonists (ADP, epinephrine and collagen)
(Johnson et al., 2010). Among humans and considering all human
populations together, the alternative allele (adenine) is present at
a frequency of 38%; the frequency of this allele varies from 32%
in African populations to 44% in South Asian populations (Köhler
et al., 2014). According to our results, all non-human species pos-
sess the alternative allele (Table 1). Although it is possible that in
non-human mammals the frequency of the minor allele follows
the human trend, and we only screened individuals belonging to
the 38% of the population, the fact that all examined species pos-
sess the alternative allele would suggest that adenine at this posi-
tion is common in non-humanmammalian species. If that were the
case, our data would suggest that the specific position of the allele
by itself potentially does not produce the human pathological con-
dition; rather pathology depends on the identity at other positions.

The polymorphism described for the ADRA2C gene represents
an in-frame deletion of four amino acids (GlyAlaGlyPro), between
positions 322 and 325, in the third intracellular loop. Some studies
have associated this polymorphism, in combination with the iden-
tity of position 389 (Arg) of the ADRB1 gene, with the risk for car-
diovascular events (e.g. stroke, cardiac death) and early onset of
hypertension (Small et al., 2002). However, there are other studies
in which this association is unclear (Nonen et al., 2005; Metra et al.,
2006; Canham et al., 2007). In our study, we found that all exam-
ined Old World monkeys (vervet, olive baboon, and macaque) pos-
sess the alternative allele, i.e. a deletion of four amino acids
(Table 1), suggesting that this variant could be common in this
group of primates. Furthermore, according to Zavala et al. (2017),
in Old World monkeys arginine at position 389 of the ADRB1 gene
is also common. Thus, Old World monkeys possess both variants
that have been associated with the risk of cardiovascular disease
and early onset hypertension (Small et al., 2002). However, simi-
larly to what was mentioned for the ADRA2A polymorphism, it is
possible that genetic variants by themselves do not trigger the con-
dition to which they have been linked; their effects could depend
on the identity at other amino acid positions.

3.4. a2-Adrenoreceptor transcript abundance in vertebrates

We characterized the transcription profiles of the a2-
adrenoreceptor genes in four representative species of vertebrates
(Table 2) with the main goal of understanding the expression pat-
tern of the ADRA2D gene, the only ADRA2 gene that was differen-
tially retained during the evolutionary history of gnathostomes. In
principle, if the expression of the ADRA2D gene is not biased to any
tissue or is not expressed in a tissue where the other members of
the gene family are not expressed, this would suggest that this
gene is redundant. On the other hand, if we were to find that
ADRA2D expression was biased to one or more of the sampled tis-
sues or was expressed in a tissue where the other paralogs are not
expressed, we would be able to argue that this gene is not redun-
dant. According to our results, in chickens the expression of the
ADRA2D gene was low in most surveyed tissues (Table 2); further-
more, in two tissues, muscle and liver, the gene was not expressed
at all. Consistent with this result, ADRA2D in chickens was the least
expressed member of the gene family (Table 2). In the spotted gar,
the situation was different as the ADRA2D gene was mostly
expressed in the brain in a similar way as in other family members.
Particularly interesting was that the ADRA2D gene was the only
expressed gene in the heart (Table 2). In contrast to that found in
chicken, ADRA2D was the second most expressed gene of the fam-
ily in the spotted gar. In elephant shark, ADRA2D was also the sec-
ond most expressed member of the gene family; however, in
contrast to the spotted gar in cartilaginous fish ADRA2D was
mostly expressed in testis, followed by the brain (Table 2). In



Table 1
Summary of a2-adrenoreceptor polymorphisms in primates and rodents.

Position ADRA2A ADRA2B ADRA2C

�1252 798 (266) +427 +69953 +202941 901–909 (301–303) 964–975 (322–325)
ID rs1800544 rs1800035 rs553668 rs869244 rs10885122 rs28365031 rs61767072
Common/rare allele G/C Asn/Lys A/G G/A T/G GluGluGlu/del GlyAlaGlyPro/del

Human G Asn A G T GluGluGlu GlyAlaGlyPro
Chimpanzee G Asn A A T GluGluGlu GlyAlaGlyPro
Gorilla G Asn A A T GluGluGlu GlyAlaGlyPro
Orangutan G Asn N/A N/A T GluGluGlu GlyAlaGlyPro
Vervet G Asn T A T GluGluGlu Del
Olive Baboon G Asn T A T GluGluGlu Del
Macaque G Asn T A T GluGlu- Del
Marmoset G Asn T A T GluGluGlu N/A
Mouse G Asn A A G GluGluAsp GlyProGly-

Table 2
Gene transcription profiles of the a2-adrenoreceptor genes in human, chicken, spotted gar, and elephant shark.

Human Chicken Spotted gar Elephant shark

2A 2B 2C 2A 2B 2C 2D 2A 2B 2C 2D 2A 2B 2C 2D

Brain 2.03 0.35 3.07 8.05 3.55 8.94 0.11 16.84 5.01 7.28 6.62 0.43 1.37 2.19 3.87
Heart 0 1.54 0 1.16 17.78 0 0.05 0 0 0 0.79 0.09 7.15 0 1.3
Kidney 3.16 6.56 10.47 3.84 0.17 0.86 0.39 1.57 1.29 0.51 0.34 2.77 1.88 1.36 1.76
Liver 0.3 1.72 0.15 0.46 0.64 0.26 0 0.57 0.53 0 2.11 0 15.56 0 0.53
Muscle 0 0.52 0 0.03 1.84 0 0 0 0.3 0.16 0 0.26 0.33 0.1 1.02
Testis 2.64 1.59 2.25 0.11 0.16 0.33 0.04 2.66 3.49 0 1.54 0.62 1.05 0.13 6.42

Gene expression was measured in transcript per million (TPM).
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humans, ADRA2 genes were mostly expressed in the kidneys, fol-
lowed by the brain and testis in which transcripts were found in
similar amounts (Table 2). Thus, according to our results the tran-
script abundance of the ADRA2D gene follows different trends in
different taxonomic groups (Table 2). In birds, ADRA2D was not
highly expressed in any of the sampled tissues, suggesting that this
gene could be redundant in this group. Similar results, but in fewer
tissues, have been found for amphibians and coelacanths (data not
shown), suggesting that this pattern originated in the ancestor of
sarcopterygians. However, given that in the spotted gar and ele-
phant shark the expression of ADRA2D is indeed biased to the
brain and testis, respectively (Table 2), it is possible that this gene
is not redundant in these groups. Consequently, during the early
evolutionary history of gnathostomes, the expression of ADRA2D
in different taxonomic groups became specialized to different tis-
sues, but in the ancestor of sarcopterygians this specialization
would have been lost.
4. Conclusions

In this study, we present an evolutionary analysis of the a2-
adrenoreceptor gene family in representative species of verte-
brates. Our phylogenetic and synteny analyses show that in addi-
tion to the three well-recognized a2-adrenoreceptor genes
(ADRA2A, ADRA2B and ADRA2C), we also recovered a clade that
corresponds to the fourth member of the a2-adrenoreceptor gene
family (ADRA2D). Based on the phyletic distribution of the genes,
we show that all but two vertebrate groups retained the full com-
plement of a2-adrenoreceptor genes; mammals and crocodiles are
characterized by possessing three a2-adrenoreceptor family mem-
bers. Furthermore, the a2D-adrenoreceptor could be a dispensable
gene as it was lost two independent times during the evolutionary
history of vertebrates. The pattern of differential retention
observed for this group of genes opens new avenues to study the
biology of the different a2-adrenoreceptors. For example, mam-
mals and crocodiles could be seen as natural knockout models
for the a2D-adrenoreceptor gene (ADRA2D). In addition to the
above, studies of species that possess the full complement of a2-
adrenoreceptors (e.g. spotted gar) would provide significant evolu-
tionary information regarding the division of labor in the a2-
adrenoreceptor gene family. Finally, transcript abundance profiles
revealed that during the early evolutionary history of gnathos-
tomes, the expression of ADRA2D in different taxonomic groups
became specialized to different tissues, but in the ancestor of sar-
copterygians this specialization would have been lost.
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