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Abstract.—The rapid diversification of Myotis bats into more than 100 species is one of the most extensive mammalian
radiations available for study. Efforts to understand relationships within Myotis have primarily utilized mitochondrial
markers and trees inferred from nuclear markers lacked resolution. Our current understanding of relationships within Myotis
is therefore biased towards a set of phylogenetic markers that may not reflect the history of the nuclear genome. To resolve
this, we sequenced the full mitochondrial genomes of 37 representative Myotis, primarily from the New World, in conjunction
with targeted sequencing of 3648 ultraconserved elements (UCEs). We inferred the phylogeny and explored the effects of
concatenation and summary phylogenetic methods, as well as combinations of markers based on informativeness or levels of
missing data, on our results. Of the 294 phylogenies generated from the nuclear UCE data, all are significantly different from
phylogenies inferred using mitochondrial genomes. Even within the nuclear data, quartet frequencies indicate that around
half of all UCE loci conflict with the estimated species tree. Several factors can drive such conflict, including incomplete
lineage sorting, introgressive hybridization, or even phylogenetic error. Despite the degree of discordance between nuclear
UCE loci and the mitochondrial genome and among UCE loci themselves, the most common nuclear topology is recovered
in one quarter of all analyses with strong nodal support. Based on these results, we re-examine the evolutionary history
of Myotis to better understand the phenomena driving their unique nuclear, mitochondrial, and biogeographic histories.
[Summary tree methods; concatenation; vespertilionidae; phylogenomics; UCE; ultraconserved elements.]

The bat genus Myotis (Order Chiroptera, Family Ves-
pertilionidae) comprises more than 100 species that ori-
ginated during the last 10–15 million years (Stadelmann
et al. 2007), making it one of the most successful extant
mammalian radiations. Myotis are distributed world-
wide, excluding polar regions, and generally share a
similar ecological niche: aerial insectivory. Myotis species
often exhibit little morphological differentiation and, as
a result, the rate of cryptic speciation within the genus is
thought to be high. For example, specimens identified
as M. nigricans and M. albescens form multiple para-
phyletic lineages distributed throughout the phylogeny
of Neotropical Myotis (Larsen et al. 2012). Confounding
matters, the morphological variation that exists is often
a poor indicator of species-level relationships. Early clas-
sifications of Myotis identified three major morphotypes
(Findley 1972). Subsequent phylogenetic analyses of the
mitochondrial cytochrome-b (cytb) gene demonstrated
paraphyletic origins of each morphotype, suggesting
frequent convergent evolution (Ruedi and Mayer 2001).
These same analyses demonstrated that geography was
a better predictor of phylogenetic relationship than mor-
phology (Ruedi and Mayer 2001; Stadelmann et al. 2007).

The ability of mitochondrial markers to resolve a
well-supported topology does not guarantee that the
mitochondrial tree represents the species tree (e.g. see
Willis et al. 2014; Li et al. 2016; Leavitt et al. 2017). The
lack of recombination and uniparental inheritance of
the mitochondrion means that it is transmitted as a

single-genetic unit that is susceptible to evolutionary
processes that may cause its history to diverge from
the history of the species (Edwards and Bensch 2009).
The most widely accepted phylogenies of Myotis rely
heavily on mitochondrial data and even phylogenies
containing nuclear data demonstrate an over reliance on
mitochondrial markers for resolution, likely swamping
out potentially conflicting signals from the nuclear
genome. For example alignments of the nuclear RAG2
and mitochondrial cytb contained 162 and 560 variable
characters, respectively (Stadelmann et al. 2007). Despite
these concerns, we find ourselves in a situation where
our understanding of evolutionary relationships, our
basis for conservation strategies, and our biogeographic
hypotheses are all founded, almost entirely, on mito-
chondrial phylogenies.

Targeted sequencing of ultraconserved elements
(UCEs; Faircloth et al. 2012) to collect sequence data
from thousands of loci across the nuclear genome has
resolved a number of difficult phylogenetic problems
(e.g. see Faircloth et al. 2012; McCormack et al. 2013;
Green et al. 2014; Faircloth et al. 2015; McGee et al. 2016).
Here we used UCE baits to collect ~1.4 Mbp from >3600
nuclear loci in addition to random shotgun sequencing to
collect full mitochondrial genomes in 37 taxa, primarily
representing New World (NW) Myotis. Rather than
analyzing each sequence data set once, or a handful of
times, we chose to use a range of sampling, partitioning,
and inference methods to fully explore phylogenetic tree
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space of the nuclear and mitochondrial genomes. We
recovered 294 trees representing 175 distinct topologies
for the nuclear UCE data and 28 trees representing
14 distinct mitochondrial topologies. Our results show
that, despite the range of trees recovered from each
marker type, nuclear and mitochondrial markers occupy
distinct regions in tree space. Given that the nuclear and
mitochondrial trees are distinct from one another it is
necessary to reevaluate hypotheses made based solely
on the mitochondrial phylogeny.

RESULTS

We used targeted sequencing of UCEs in 37 individu-
als (Table 1) to collect sequence data from 3648 nuclear
loci which we assembled into concatenated alignments
as large as 1.37 Mb. In addition, we assembled mito-
chondrial genomes for most taxa from random shotgun
sequencing data. We then used the data to infer the
phylogenetic history of New World Myotis using a range
of locus sampling strategies, alignment partitioning
methods, and phylogenetic inference methods.

Mitochondrial Assembly, Alignment, and
Phylogenetic Inference

We generated an average of 5,498,440 paired reads per
sample (min=2,2370,68, max=9,961,348) of random
DNA sequence data for mitochondrial genome assembly.
Assemblies varied in quality. Some were almost entirely
complete while others were missing small regions. We
were not able to assemble the entire mitochondrial
control region for any of the samples. We found three
premature stop codons in mtDNA protein coding genes.
Subsequent manual alignment and validation suggested
that these regions were miscalled by MitoBim, and we
corrected the errors prior to analysis. Sequence coverage
of the mitochondrial genomes averaged 58× (range
>1×–297×).

The 37 mitochondrial protein coding, rRNA and tRNA
genes were concatenated into an alignment of 15,520
bp containing 5007 informative characters. rRNA and
tRNA genes were concatenated into an alignment con-
taining 4157 bp containing 862 parsimony informative
characters. Protein coding genes were concatenated into
an alignment containing 11,363 bp or 3770 amino acids
(aa) and containing 4145 or 509 parsimony informative
characters, respectively. For the alignment containing
all protein coding, rRNA and tRNA genes, 30 samples
were � 90% complete, and alignments for five samples
were 68–84% complete. Only 21% and 50% of nucleotide
positions were present in the M. albescens3 (TK 61766)
and M. levis alignments, respectively.

When considering alignment type, partitioning
strategy, and phylogenetic inference method we ana-
lyzed the mitochondrial data 28 ways as described
in the Methods section. These analyses recovered 14
distinct topologies, the most common of which was

recovered six times, all by analysis of the translated
protein coding genes (Fig. 1a). Despite being the most
common topology, bipartition frequencies and clade
probability values were lower than nucleotide based data
sets, as would be expected with more slowly evolving
amino acid sequences. Analysis of RNA coding genes
recovered two topologies depending on the method of
phylogenetic inference. The remainder of the analyses
recovered various trees without any pattern relating to
partitioning scheme or inference method. A majority
rule consensus tree for all 28 analyses is shown in
Figure 1c. The mitochondrial consensus tree reflects pre-
viously reported mitochondrial phylogenies for Myotis.
The New World Myotis are generally monophyletic
splitting into Nearctic and Neotropical clades with the
Old World taxon, M. brandtii, sister to the Neotropical
clade. Ambiguity, represented by polytomies, is found
only in terminal relationships.

UCE Assembly and Alignment, and Phylogenetic Inference
We averaged 3.29 million reads per sample after

demultiplexing reads from the UCE-enriched, sequen-
cing pool. These reads were assembled into an aver-
age of 5778 contigs per sample (min=1562 M. nyctor,
max=11,784 M. nigricans3). Recovery rates for UCE loci
varied across taxa. Of the 5500 loci in the Amniote
probe set, we successfully recovered 3898 UCE loci,
3648 loci from five or more samples and 212 loci in all
37 samples (Table 2). On average, 3332 UCE loci were
recovered per sample, ranging from 1106 (M. nyctor)
to 4008 (M. keaysi). Repetitive sequences, identified via
RepeatMasker searches, were minimal, occupying less
than 0.02% of sites across all UCE alignments.

In all, 294 different combinations of alignment, par-
titioning, and inference method were used to identify
175 unique nuclear topologies. The most common tree
was recovered 45 times (Fig. 1b). All nodes were highly-
supported based on clade probability values and all
but three nodes were highly supported with maximum
likelihood bootstrap replicates. A consensus tree (Fig. 1d)
of the 294 nuclear topologies resolves New World Myotis
(and M. brandtii) as a single polytomy that excludes
M. volans and represents a departure from previous
mitochondrial phylogenies, including the one recovered
herein. Comparison of the mitochondrial and nuclear
consensus trees (Fig. 1c,d) reveals substantial differences
in the relationships within the genus.

As noted above, we were concerned that phylogenetic
error, sampling bias or other methodological factors
may be driving the conflict between the mitochondrial
and nuclear trees. To address this, we investigated
the effects of matrix composition (or completeness)
on phylogenetic inference by generating 10 alignments
having varying levels of matrix completeness. Nine
alignments were composed of loci with 15 to 95% (at 10%
intervals) of taxa. The tenth alignment was composed
of all loci which were recovered in 100% of specimens
examined. For example, all loci that were represented
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TABLE 1. Specimens examined

Species Name herein Museum identification Number of Short read Mitochondrial genome
or accession number UCE loci archive accession accession

Eptesicus fuscus fuscusG GCA_000308155.1 2467 NA KF111725.1
Eptesicus fuscus fuscus TK 178736 2849 SAMN06141755 MF143474
Myotis albescens albescens1 RDS 7889 2764 SAMN06141756 MF143471
Myotis albescens albescens2 QCAZ 9157 1185 SAMN06141757 MF143497
Myotis albescens albescens3 TK 61766 2872 SAMN06141758 MF143470
Myotis ater ater M4430 2774 SAMN06141760 MF143493
Myotis auriculus auriculus MSB 40883 2229 SAMN06141761 MF143486
Myotis brandtii brandtiiG GCA_000412655.1 2446 NA KT210199.1
Myotis californicus californicus UMMZ 175828 2948 SAMN06141763 MF143469
Myotis davidii davidiiG GCA_000327345.1 2450 NA KM233172.1
Myotis diminutus diminutus QCAZ 9168 3078 SAMN06141777 MF143481
Myotis dominicensis dominicensis TK 15624 2576 SAMN06141764 MF143467
Myotis evotis evotis MSB 47323 2586 SAMN06141765 MF143468
Myotis fortidens fortidens MSB 54941 2791 SAMN06141766 MF143483
Myotis horsfieldii horsfieldii MHNG 1926.039 3017 SAMN06141767 MF143494
Myotis keaysi keaysi TK 13525 3195 SAMN06141768 MF143477
Myotis keenii keenii UAM 113849 2723 SAMN06141769 MF143472
Myotis leibii leibii TK 24872 3119 SAMN06141770 MF143488
Myotis levis levis RDS 7781 2538 SAMN06141771 MF143482
Myotis lucifugus lucifugusG GCA_000147115.1 2429 NA KP273591.1
Myotis lucifugus lucifugus MSB 46679 2736 SAMN06141772 MF143491
Myotis melanorhinus melanorhinus TK 193888 3177 SAMN06141774 MF143489
Myotis nigricans nigricans1 QCAZ 9601 2854 SAMN06141775 MF143495
Myotis nigricans nigricans2 TK 194145 3159 SAMN06141776 MF143484
Myotis nyctor nyctor TK 151413 856 SAMN06141773 MF143498
Myotis occultus occultus MSB 121995 2957 SAMN06141778 MF143490
Myotis oxyotus oxyotus UMMZ RCO1013 3106 SAMN06141779 MF143479
Myotis riparius riparius1 TK 22688 2924 SAMN06141782 MF143473
Myotis riparius riparius2 TK 101723 2990 SAMN06141759 MF143475
Myotis riparius riparius3 TK 145199 2890 SAMN06141780 MF143480
Myotis ruber ruber MVZ 185692 2757 SAMN06141781 MF143478
Myotis septentrionalis septentrionalis TK 194420 2916 SAMN06141762 MF143487
Myotis thysanodes thysanodes 07LEP 2821 SAMN06141783 MF143492
Myotis velifer velifer MSB 70877 2704 SAMN06141784 MF143499
Myotis vivesi vivesi MSB 42658 2469 SAMN06141785 MF143476
Myotis volans volans MSB 40886 2819 SAMN06141786 MF143496
Myotis yumanensis yumanensis TK 194144 2589 SAMN06141787 MF143485

Samples beginning with “GCA_” represent genome assemblies available through NCBI. Species with more than one sample
are designated with a superscript. Specimens derived from whole genome alignments are designated with a superscript “G.”
MSB = Museum of Southwestern Biology; MVZ = Museum of Vertebrate Zoology; MHNG = Natural History Museum of
Geneva; QCAZ = Pontificia Universidad Catolica del Ecuador Museo de Zoologia; TK = Texas Tech University Natural Science
Research Laboratory; UAM = University of Alaska Museum of the North; UMMZ = University of Michigan Museum of
Zoology.

in at least 15% of species (ntaxa � 5) were included
in the alignment (nloci = 3648). In the “100%” matrix,
only loci which were identified in all species (ntaxa =
37) were included (nloci = 212). Alignments were parti-
tioned using three schemes: unpartitioned, individually
partitioned by locus, or combined partitions. Align-
ment lengths, numbers of informative characters and
number of partitions identified by PartitionFinder are
available in Table 2. Resulting alignments were analyzed
with Bayesian, maximum likelihood, and coalescent
methods using RaxML, ExaBayes, ASTRID, ASTRAL-II,
and SVDquartets as described in the Methods section.
Bootstrap topologies stabilized in each alignment and
partition combination within 150 replicates and all
Bayesian runs converged in less than ten thousand

generations. Unfortunately, computational limits forced
us to abandon the individually partitioned, Bayesian
analyses. In general, the same alignment produced
the same topology regardless of inference method or
partitioning scheme with the only exception being the
terminal relationships of the M. levis/M. albescens clade
in the combined versus unpartitioned Bayesian analysis
of the 100% complete data matrix.

We also tested how locus length could affect phylo-
genetic discordance. To do so, trees were generated from
data matrices incorporating UCE loci of differing lengths
(Hosner et al. 2016). All 3648 loci were grouped into
10 separate bins based on locus length. The number
of informative characters per bin ranged from 1115 to
6995 and the number of informative characters was
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FIGURE 1. Comparison of nuclear and mitochondrial phylogenetic trees of Myotis. The most common mitochondrial (a) and nuclear (b)
topologies. The mitochondrial topology arises from Bayesian and maximum likelihood analysis of the amino acid sequences portioned based on
the PartitonFinder recommendations. The nuclear topology is from the 55% complete data matrix partitioned based on the recommendations
of PartitionFinder. For clarity, bootstrap values greater than 95 and clade probability values greater than 0.95 have been omitted from the
nuclear consensus tree. Majority-rule consensus trees from 28 mitochondrial (c) and 294 nuclear (d) topologies. Values above the branches in the
consensus trees (c,d) are bipartition frequencies for that clade across all nuclear or mitochondrial topologies. Conflicting tips between data types
(consensus nuclear vs. consensus mitochondrial) are indicated with red lines between the topologies. Biogeographic regions are color coded,
as are subgeneric classifications based on morphotypes, as defined by Findley (1972). Species with more than one sample are designated with a
superscript that is referenced in Table 1. Specimens derived from whole genome alignments are designated with a superscript “G.”
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TABLE 2. Matrix composition analysis

Matrix ID (% taxa Min. num. Number of loci Parsimony- Variable Alignment Optimum
with data from locus) of taxa characters informative uninformative length partitions

15 5 3648 38,718 62,588 13,77,262 31
25 9 3379 37,894 57,672 12,60,248 37
35 12 3232 37,259 56,453 12,27,093 34
45 16 3064 36,539 54,782 11,87,492 31
55 20 2890 35,284 53,200 11,44,471 27
65 24 2668 34,373 51,148 10,91,620 27
75 27 2481 33,031 48,732 10,41,099 20
85 31 2034 29,179 41,711 903,903 16
95 35 1193 18,288 24,189 575,321 15

100 37 212 3480 4778 112,125 6

General alignment information. For a subset of analyses a series of alignments were generated based on the number of
taxa represented by each locus. Thirty-seven taxa were examined so an alignment with all 37 taxa was considered 100%
complete. Parsimony-informative characters make up a small portion of the total alignment. The optimum partitioning
scheme was calculated with PartitionFinder.

correlated with average locus length (Supplementary
Material Fig. 1 available on Dryad at http://dx.doi.org/
10.5061/dryad.5g205). On average, only 2.6% of char-
acters in each bin were parsimony-informative (Sup-
plementary Material Fig. 1 available on Dryad at
http://dx.doi.org/10.5061/dryad.5g205). Each of the
ten length-based alignments recovered slightly different
topologies. Terminal relationships were generally stable
across analyses with the majority of differences between
topologies found in the early bifurcations of Myotis.
Generally, longer alignments produced well resolved
and similar/identical topologies with significant nodal
support regardless of the phylogenetic method or parti-
tioning scheme used. In contrast, smaller data sets were
more likely to yield unique topologies.

Given the goal of fully exploring nuclear tree space
and generating as many reasonable nuclear UCE based
topologies for comparison with the mitochondrial tree,
we decided to randomly sample a limited number
of nuclear UCE loci to create small alignments that
would be more likely to result in unique topologies. We
therefore randomly subsampled UCE loci to create 100
unique data sets of 365 loci. Loci were concatenated in
each replicate data set and analyzed using maximum
likelihood in RAxML. Of the 100 alignments analyzed,
80 unique topologies were generated (mean Robinson–
Foulds distance = 4.3).

In addition to concatenation methods we explored
phylogenetic tree space of the UCE data set using
species tree methods. Normalized quartet scores from
ASTRAL-II (Mirarab and Warnow 2015) analyses were
consistent among all analyses, with scores ranging from
0.540 to 0.553, and the number of induced quartet
gene trees ranging from 7,745,739 (100% complete 212
gene trees) and 63,042,410 (15% 3648 loci). SVDquartets
(Chifman and Kubatko 2014) sampled all 66,045 quartets.
On average, the total weight of incompatible quartets
was 2.84%. Similar to the concatenated analysis, we
inferred coalescent-based species from the same 100
subsamples of 365 loci described above. Despite being
generated from the same underlying data, summary, and

concatenation methods only recovered the same tree in
1 of 100 attempts.

Finally, we used weighted and unweighted statist-
ical binning to combine individual gene trees into
supergenes, estimate the supergene phylogeny, and then
infer the species tree from the supergene trees. The
3648 loci were combined into 528 binned loci with 480
bins containing 7 loci each and 48 bins containing 6
loci each. Binning methods increases the normalized
quartet scores from an average of 0.547 with gene trees
to 0.672 for the binned-unweighted and 0.673 for the
binned-weighted supergene trees. Given the relatively
even distribution of loci into bins the negligible differ-
ence in quartet/species tree discordance between the
unweighted and weighted supergene trees is expected.
Binning methods have been shown to recover incorrect
species trees under coalescent methods by altering gene
tree frequencies. In addition, it is possible that support
for incorrect trees can actually increase with the number
of input gene trees (Liu and Edwards 2015). With these
concerns in mind, both binning methods recovered the
same topology which was the most common nuclear
topology observed across all analyses (Fig. 1c).

Topological Comparisons
All mitochondrial and nuclear trees are available

in Supplementary Material File 1 available on Dryad
(http://dx.doi.org/10.5061/dryad.5g205). When visu-
alizing all topologies in tree space, nuclear trees co-
localized and were distinct from mitochondrial topolo-
gies (Fig. 2a). Comparisons of Robinson–Foulds sym-
metrical differences show 26 symmetrical differences
between the most similar nuclear and mitochondrial
trees (Fig. 2b). For comparison only 9 of 43,070 and 0 of
378 pairwise nuclear versus nuclear and mitochondrial
versus mitochondrial tree comparisons, Figure 2c and
d, respectively, exhibited more than 26 symmetrical
differences.
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FIGURE 2. Comparison of mitochondrial and nuclear topologies (Fig. 1a). All trees recovered from mitochondrial and nuclear analyses were
visualized in tree space using multidimensional scaling of Robinson–Foulds distances. Nuclear trees (green outlines) were clustered separately
from mitochondrial trees (blue outlines). Robinson–Foulds distances between nuclear and mitochondrial trees (Fig. 1b), nuclear versus nuclear
trees, (Fig. 1c) and mitochondrial versus mitochondrial trees (Fig. 1d) indicate the overall distinctions between the nuclear and mitochondrial
topologies.

Of the 45 analyses that recovered the most frequently
observed topology (Fig. 1b), 38 were Bayesian and
RAxML searches that varied by matrix completeness
and partitioning scheme. The fact that these analyses
recovered the same topology is expected given that they
are not independent. For example, a RAxML analysis
of the 25% complete data set uses 1.26 Mb of the
1.38 Mb of data present in the 15% complete matrix,
sharing 91% of the data. Analyses that directly varied
the alignments and/or sampled less data (e.g. randomly
sampling loci) were more likely to generate unique
topologies than the nested analyses described above.
Of the 200 analyses that randomly sampled UCE loci,
164 unique topologies were observed. This implies that
when analyses of large data sets produce well-resolved
trees with significant nodal support, sampling smaller
portions of the data, may provide a mechanism for
creating phylogenetic uncertainty not represented by
typical tree scoring metrics.

DISCUSSION

We analyzed 3648 UCE loci and mitochondrial gen-
omes of 37 Myotis bats and outgroups. The mitochon-
drial and nuclear UCE phylogenies recovered distinct
topologies (Fig. 1), whether comparing the most com-
monly recovered or consensus topologies. Previous
work with UCE loci demonstrated that support for
deep divergences varied based on the number of loci
examined (McCormack et al. 2013). Further, bootstrap
replicates and clade probability values can be inaccurate
metrics of nodal support (Douady et al. 2003, Hedtke
et al. 2006). We varied the input data and phylogenetic

parameters to produce a range of reasonable nuclear and
mitochondrial topologies that may be more useful than
overreliance on a tree resulting from one or two analyses.
Rather than rejecting concordance between the two data
types from a single analysis we took steps to analyze
both data sets to generate many viable topologies to
potentially reveal hidden overlap between marker types
masked by phylogenetic error.

We recovered 175 and 14 unique nuclear and mito-
chondrial topologies from 294 and 28 analyses using
multiple methodologies, sampling strategies, and phylo-
genetic parameters. By varying our phylogenetic meth-
ods we show that recovering a consistent topology is
difficult even when using the same marker type, thus
making it difficult to determine the “best” topology.
Rather than choosing single trees to represent the
nuclear and mitochondrial data, we use consensus trees
to represent the ambiguity that is present through
all analyses, in addition to phylogenies conforming
to the most common topology (Fig. 1). Despite our
efforts to identify as many plausible, distinct nuclear
and mitochondrial trees as possible we were unable to
recover overlapping topologies between marker types
suggesting that nuclear UCE loci and the mitochondrial
genomes of Myotis have distinct evolutionary histories.

A comparison of topologies in tree space illustrates the
differenced in trees generated for each data set (Fig. 2a).
Intramarker discordance, as measured by differences in
nuclear versus nuclear or mitochondrial versus mito-
chondrial topologies is low. Pairwise comparisons of
nuclear topologies contain an average of 8.3 symmetrical
differences, mitochondrial comparisons contain an aver-
age of 10.8 differences. By contrast, pairwise differences
between nuclear and mitochondrial topologies contain
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an average of 33.3 symmetrical differences. The two most
similar nuclear and mitochondrial topologies contain
26 symmetrical differences. Of the 43,072 pairwise
comparisons of nuclear topologies, only 27 contain more
than 26 symmetrical differences. Likewise of the 378
pairwise comparisons of mitochondrial topologies only
one contains more than 26 symmetrical differences.
These observations indicate that discordance between
marker types (Fig. 2b) is much greater than within
marker type (Fig. 2c,d). All but the most divergent
nuclear topologies are more similar to each other than
any nuclear versus mitochondrial comparison.

Conflict between mitochondrial and nuclear data may
be driven by error in phylogenetic estimation or may
reflect genuine discordance between the two marker
types (Degnan and Rosenberg 2009; Huang et al. 2010).
We relied on multiple tree-inference methods (e.g.
summary vs. concatenation), manipulated phylogenetic
parameters (e.g. partitioning strategy), and sampling
criteria (e.g. loci sampled in all taxa) to minimize the
impacts of phylogenetic error on the data sets. In most
cases, varying parameters or methodologies generated
unique topologies with minor differences. In most cases
unique topologies resulted from rearrangements of a
few terminal taxa. For example, placement of M. volans
and M. brandtii was often either sister to the remaining
New World Myotis or as an early bifurcation between
the Nearctic and Neotropical clades. Myotis vivesi was at
times found as sister to the clade containing M. lucifugus,
M. occultus, and M. fortidens or as sister to the clade
containing the neotropical Myotis.

Summary methods failed to recover the most com-
mon nuclear topology presented in Figure 1b except
when loci were binned prior to gene tree estimation.
Summary methods also tended to recover more unique
topologies than concatenation methods when analyzing
data from the same gene(s). For example, the random
sample analyses recovered 80 unique topologies using
concatenation (RAxML) and 89 unique topologies with
summary methods (ASTRAL-II). This likely has to do
with the limited number of informative characters per
locus and by extension limited phylogenetic signal per
gene tree (Supplementary Material Fig. 1 available on
Dryad at http://dx.doi.org/10.5061/dryad.5g205). In
these instances, limited phylogenetic signal per gene
would likely lead to increased opportunity for phylogen-
etic error in gene tree estimation. Further supporting this
idea, binning of compatible UCE loci may have indirectly
increased phylogenetic signal resulting in the same topo-
logy that many of the concatenation analyses recovered.
No other summary/coalescent method recovered this
topology.

Previous studies that used primarily mitochondrial
data recovered effectively the same relationships among
Myotis as our mitochondrial analyses (Ruedi and Mayer
2001; Stadelmann et al. 2007; Roehrs et al. 2010; Larsen
et al. 2012; Ruedi et al. 2013; Haynie et al. 2016).
Differences between our tree and any single previ-
ously published trees are minor. For example, our tree

agrees with Stadelmann et al. (2007) except in the
placement of M. septentrionalis and M. auriculus. Our
nuclear UCE topology places M. septentrionalis and M.
auriculus sister to a clade containing M. californicus, M.
leibii, and M. melanorhinus. Even though this placement
of M. septentrionalis and M. auriculus disagrees with
Stadelmann et al. (2007) it is the same relationship
recovered by Haynie et al. (2016). Thus, even though
there were some concerns and miscalled nucleotides
in the MITObim assemblies, these inaccuracies have
not caused the mitochondrial tree to deviate from
the expectations derived from previous work. Given
the consistency of our mitochondrial phylogeny with
previously published and independently recovered
topologies, we are confident that the mitochondrial
phylogeny we recovered here, and by others, reflects
the true mitochondrial tree. However, the mitochondrial
topology may not adequately reflect the species history,
particularly when considering the factors that cause
incongruence between nuclear and mitochondrial gene
trees. Causes of conflicting gene trees include horizontal
transfer, gene duplication, introgressive hybridization,
and incomplete lineage sorting. The rapid radiation of
this clade as well as other biological factors suggests
that some of these phenomena are more likely to have
influenced the Myotis radiation than others.

Horizontal transfer of genes is thought to be rare in
eukaryotes, but, vespertilionids in general (Thomas et
al. 2011; Platt et al. 2014; Platt et al. 2016), and Myotis
in particular (Pritham and Feschotte 2007; Ray et al.
2007; Ray et al. 2008; Pagan et al. 2010), have experi-
enced horizontal transfer of DNA transposons. These
events would not be reflected in our phylogeny because
repetitive sequences were removed prior to phylogenetic
analyses. More generally, gene duplications could create
conflicting signal among individual UCE markers (e.g.
comparing nonorthologous UCE loci), but the number
of gene duplication events would have to be very high
to impact enough of the 3648 UCE loci to confound the
mitochondrial and nuclear phylogenies. Further ruling
out gene duplication events as the dominant cause of
conflicting phylogenetic signal is the fact that such events
are likely depressed in Myotis as evidenced by their
smaller genome size (~2.2 Gb) and trend towards DNA
loss (Kapusta et al. 2017) combined with low rates of
paralogy in UCEs in general (Derti et al. 2006).

Introgressive hybridization and reticulation could
significantly influence the phylogenies of Myotis in a
way that leads to conflicting signal between the nuclear
and mitochondrial genomes (Sota 2002; Good et al.
2015). Hybridization in bats may be relatively common
given their propensity to swarm at cave entrances for
breeding purposes. In European Myotis, swarming has
allowed for high degrees of hybridization between M.
brandtii, M. mystacinus, and M. alcathoe (Bogdanowicz et
al. 2012). Further, M. evotis, M. thysanodes, and M. keeni all
experienced historical gene flow during their divergence
(Carstens and Dewey 2010; Morales et al. 2016). We could
also explain the differences between the mitochondrial
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and nuclear UCE phylogenies if Myotis experienced
extensive incomplete lineage sorting during their radi-
ation. Two factors influence the rate of lineage sorting,
the fixation rate and the speciation rate (Hudson et al.
2002). Increasing the time to fixation and/or decreasing
the amount of time between cladogenic events will
increase the likelihood of incomplete lineage sorting.
Myotis are generally long-lived species (Dzeverin 2008)
and underwent a rapid radiation between 5 and 10
MYA (Lack et al. 2010), suggesting that Myotis species
are likely to experience higher levels of lineage sorting.
The importance of these events—introgressive hybrid-
ization and incomplete lineage sorting—in driving the
differences between the mitochondrial and nuclear
phylogenies should be further explored.

Evolutionary History of Myotis
Our understanding of relationships within Myotis is

heavily biased by mitochondrial data because nuclear
markers were harder to collect and produced fewer
informative sites (Ruedi and Mayer 2001; Stadelmann
et al. 2007; Lack et al. 2010; Roehrs et al. 2010; Larsen
et al. 2012; Ruedi et al. 2013; Haynie et al. 2016) or
nuclear phylogenies with large numbers of makers
contained limited numbers of taxa (Platt et al. 2015).
Our UCE-based results indicate that nuclear trees vary
substantially from the mitochondrial tree. Given that the
nuclear and mitochondrial trees are different, we find
it necessary to re-evaluate Myotis in the context of the
nuclear data.

Paraphyly of M. nigricans and M. albescens was inferred
from previous mitochondrial phylogenies. Larsen et al.
(2012) identified a minimum of 4 and potentially 12
lineages in M. albescens and M. nigricans. Our sampling
included three M. albescens and two M. nigricans,
compared with Larsen’s 17 and 29 samples. Despite
different mitochondrial and nuclear topologies overall,
our mitochondrial and nuclear phylogeny recovered the
same paraphyletic clade of three M. albescens samples
and M. levis. Close relationships between these taxa
were found in previous work and are expected. More
importantly we did not find that M. albescens was
paraphyletic across much of neotropical Myotis. We also
found that M. nigricans is monphlyletic in the nuclear
tree, but paraphyletic in the mitochondrial tree. These
results from M. nigricans and M. albescens are interesting
but further inference is limited due to low sample sizes
of these taxa.

The original subgeneric taxonomy of Myotis was based
on three morphotypes that were later shown to be the
result of convergent evolution (Ruedi and Mayer 2001).
If lineage-sorting affected the mitochondrial phylogeny,
it is possible that the morphotypes truly are mono-
phyletic. However, superimposing the previous sub-
generic/morphological classification onto the species
tree shows an interspersed distribution of morphotypes
throughout the most common and consensus nuclear
topologies (Fig. 1a,b). Many strongly supported terminal

relationships link species with different morphotypes.
Based on these results, it appears that the three major
morphotypes in Myotis are indeed a result of convergent
evolution, as suggested by previous work (Ruedi and
Mayer 2001; Stadelmann et al. 2007) despite the conflict-
ing mitochondrial and nuclear phylogenies recovered.

Among the more dramatic differences between the
nuclear and mitochondrial topologies is the placement of
M. volans and M. brandtii as sister to all New World taxa
by the nuclear data. Our mitochondrial analyses place
M. volans within a Nearctic clade and M. brandtii directly
inbetween the Nearctic and Neotropical bifurcations
(Fig. 1a,c) as has been previously reported (Stadelmann
et al. 2007). In contrast the consensus UCE tree (Fig. 1d)
places M. brandtii, a species distributed throughout the
Old World, within a polytomy at the base of the New
World Myotis radiation and M. volans sister to all New
World Myotis (including M. brandtii). The placement
of M. brandtii in the nuclear UCE consensus tree does
not necessarily contradict the mitochondrial phylogeny
since it is an unresolved polytomy. However, it is
worth noting that the most commonly recovered nuclear
topology (Fig. 1b) places M. brandtii sister to all New
World Myotis (excluding M. volans). This relationship
would more closely affiliate M. brandtii with other Old
World taxa. The placement of M. volans as sister to all
New World taxa (including M. brandtii) in the most
common nuclear tree is a significant departure from
previous work and, at first glance, does not make as
much sense in a biogeographic framework. Myotis volans
is distributed across western and northwestern North
America as far as far north as Alaska. Myotis brandtii is
distributed across much of Northern Europe and into
the extreme eastern regions of Siberia. The key may lie
in understanding the biogeography and phylogenetics
of a third species, M. gracilis, a species that we were
unfortunately unable to include.

Myotis gracilis, along with M. brandtii, are the only two
Myotis geographically distributed in the Old World, but
phylogenetically affiliated with the New World Myotis
(Stadelmann et al. 2007). If future work verifies the sister
relationship between M. brandtii and M. gracilis, then we
can envision a scenario where M. gracilis, M. brandtii,
and M. volans are the result of cladegenic events that
occurred during the transition of Myotis from the Old
World to the New World. It is important to remember that
this interpretation relies on a fairly dramatic departure
from the currently accepted mitochondrial relationships
of M. volans (represented here by a single sample) to
other Myotis species and abandons the nuclear UCE
consensus tree for the most frequently recovered UCE
topology. In addition, our taxonomic sampling excludes
Myotis species from the Old World, Ethiopian clade, the
sister clade to New World Myotis (Ruedi and Mayer 2001;
Stadelmann et al. 2007; Lack et al. 2010; Ruedi et al. 2013).
Taxa from the Ethiopian clade are needed to properly
root the New World Myotis clade and understand its
biogeographic origins. With these caveats in mind, the
hypothesis presented here should be viewed as highly
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speculative. Increasing the number of sampled Myotis
lineages will shed additional light on this hypothesis.

Other taxa with conflicting positions between marker
types include the M. lucifugus + M. occultus clade, M.
fortidens, and M. vivesi. In general, these relationships
are characterized by very short branches (Fig. 1d) and
are the most likely to be affected by incomplete lineage
sorting or limited phylogenetic information. This could
explain the strong support with the mitochondrial tree
compared with the nuclear species tree, while allowing
for a number of nuclear loci to disagree with the species
tree, as well.

There are a number of monophyletic groups iden-
tified with nuclear data (Fig 1a) that share general
morphologies. For example, all of the long-eared bats
(M. septentrionalis, M. auriculus, M. evotis, M. thysanodes,
and M. keenii) represent a monophyletic group of higher
elevation, forest-dwelling species that glean insects off
of surfaces (Fitch and Shump 1979; O’Farrell and Studier
1980; Warner 1982; Manning and Jones 1989; Caceres and
Barclay. 2000). The group represented by M. fortidens,
M. lucifugus, and M. occultus represent a relatively
long-haired form of Myotis. While having a distinct
dental formula, fortidens was historically described as a
subspecies of M. lucifugus (Miller and Allen 1928), and
M. occultus has alternately represented its own species
or been considered a subspecies of lucifugus (Hollister
1909; Valdez et al. 1999; Piaggio et al. 2002). The clade
consisting of M. keaysi, M. oxyotus, M. ruber, M. riparius,
and M. diminutus represents a neotropical group of
primarily woolly haired bats (LaVal 1973). None of these
relationships are monophyletic in the consensus or most
common mitochondrial topologies. If the mitochondrial
genome has been subjected to phenomena that obscure
the true species tree then these species groups, along
with their synapomorphic morphological features, can
be reevaluated.

Conclusions
Relationships within Myotis, which until now have

relied heavily on mitochondrial data, served as the
basis for species identification (Puechmaille et al. 2012),
evolutionary hypotheses (Simões et al. 2007), and even
conservation recommendations (Boyles and Storm 2007).
Previous studies using nuclear data have largely been
uninformative or utilized too few samples to draw
definitive conclusions. Trees estimated from ~3650
nuclear loci and 295 phylogenetic analyses recovered
175 topologies, none of which are congruent with the
mitochondrial phylogeny of Myotis. Conflict between
the mitochondrial and nuclear trees as well as among
individual nuclear loci suggest that the Myotis radiation
may have been accompanied by high levels of incomplete
lineage sorting and possible hybridization. Rather than
placing emphasis on the mitochondrial tree, it may be
more appropriate to consider it for what it really is: a
single gene on par with a single-UCE locus, albeit one
with many more phylogenetically informative charac-
ters. If true, then the mitochondrial genome is as likely

to reflect the true species tree as any single-UCE locus
chosen at random. Phenomena such as lineage sorting,
reticulation, and introgression have likely influenced
the genomes of Myotis and should be accounted for in
subsequent work. It is possible that the Myotis radiation
is more accurately reflected as a hard polytomy or a
phylogenetic network rather than a strictly bifurcating
phylogeny.

MATERIALS AND METHODS

Taxon Selection
Taxa were selected to span the major phylogenetic

break points with emphasis on the Nearctic and Neo-
tropical bifurcation as recovered in previous mitochon-
drial phylogenies (Stadelmann et al. 2007; Ruedi et al.
2013). In addition, multiple individuals morphologically
identified as M. nigricans and M. albescens were included
to test for paraphyly as suggested by Larsen et al.
(2012). Three Old World species of Myotis and the
outgroup, Eptesicus fuscus, were included to root phylo-
genetic analyses. All field identifications were confirmed
from museum-voucher specimens. Information for all
specimens examined is available in Table 1.

Library preparation, sequencing, and processing
Genomic DNA was extracted from 33 samples using

either a Qiagen DNEasy extraction kit or a phenol-
chloroform/ethanol precipitation. DNA was fragmen-
ted using the Bioruptor UCD-300 sonication device
(Diagenode, Denville, NJ, USA). Libraries were prepared
using the Kapa Library Preparation Kit KR0453-v2.13
(Kapa Biosystems, Wilmington, MA, USA) following
the manufacturer’s instructions with five minor modi-
fications. First, we used half volume reactions. Second,
subsequent to end repair, we added Sera-Mag Speed-
beads (Thermo-Scientific, Waltham, MA, USA; prepared
according to Glenn et al. 2016) at a ratio of 2.86:1 for
end repair cleanup. Third, we ligated universal iTru
y-yoke adapters (Glenn et al. 2016) onto the genomic
DNA. Fourth, following adapter ligation, we performed
one postligation cleanup followed by Dual-SPRI size
selection using 55 μL of speedbead buffer (22.5mM
PEG, 1M NaCl) and 25 μL of Speedbeads. Finally, we
performed a PCR at 95°C for 45 s, then 14 cycles of 9 °C
for 30 s, 60°C for 30 sec, 72°C for 30 s, then 72°C for a
5 min final extension and a 12°C hold using iTru5 and
iTru7 primers to produce Illumina TruSeqHT compatible
libraries (Glenn et al. 2016).

Libraries were quantified on a Qubit 2.0 (Life Techno-
logies) and 83 ng from each library was added to create
5 pools of 6 or 7 libraries each. We then split the pools in
two. One subsample was enriched for UCE loci, the other
was not. UCE loci in the enriched library pools were cap-
tured using Tetrapods 5K version 1 baits from MYcroar-
ray (Ann Arbor, MI, USA) following their MYbaits
protocol v. 2.3.1 with overnight incubations (Faircloth
et al. 2012). Enriched libraries were quantified with a
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Qubit and pooled with other unrelated samples prior
to sequencing on an Illumina HiSeq 3000 to produce
paired-end reads of� 151 bases. The unenriched samples
were sequenced on a separate run using a single lane of
Illumina HiSeq 2500. All samples were demultiplexed
with Illumina’s fastq2bcl software. Reads were quality
filtered by removing any potential adapter sequence and
trimming read ends once the average Phred quality over
a four-base window score dropped below 20 using the
Fastx toolkit (Gordon and Hannon 2010).

Assembly, Annotation, and Phylogenetic Analysis of the
Mitochondrial Genome

Raw reads from the unenriched libraries were used
to generate mitochondrial genomes via MitoBim (Hahn
et al. 2013). This program used MIRA (Chevreux et al.
1999) to map reads to a M. brandtii reference mitochon-
drial genome (Genbank accession number KT210199.1).
Alternative methods of mitochondrial genome assembly
were used when MitoBim assembly failed. These taxa
include M. albescens (TK61766), M. albescens (TK 101723),
M. albescens (RDS 7889), M. fortidens, M. keeni, M. melan-
orhinus, M. nigricans (QCAZ 9601), M. septentrionalis,
M. simus, M. velifer, and M. volans. For these samples,
we first identified reads that were mitochondrial in
origin using BLAST searches against the M. brandtii
mitochondrial genome (KT210199.1). Those reads were
assembled using Trinity v2.2.0 with the “–single” option
to treat reads as unpaired. For taxa where we used
NCBI genome assemblies to recover UCE loci in silico
mitochondrial genomes from genbank were used to
in the mitochondrial analyses GenBank as follows: M.
brandtii (KT210199.1), E. fuscus (KF111725.1), M. lucifugus
(KP273591.1), and M. davidii (KM233172.1).

Once assembled, each mitogenome was annotated
via MITOS (Bernt et al. 2013). Annotated genes were
manually validated via BLAST to confirm sequence
identity and length. Protein coding genes were checked
for stop codons using EMBOSS’s transeq program (Rice
et al. 2000). When a stop codon was found, we used
the raw reads to verify the sequence. We used BWA
v0.7.12 (Li and Durbin 2009) to align the reads to the
Mitobim assembled mitogenome to verify base calls
from Mitobim. The protein coding rRNA and tRNA
genes from each assembly were aligned using MUSCLE
and concatenated into three different alignments con-
taining only protein coding genes, only rRNA and tRNA
genes, or all protein coding and RNA genes. A fourth
alignment of all protein coding genes was translated to
amino acids and concatenated into a single alignment.

Several different partitioning schemes were examined
for each of the mitochondrial alignments. Alignments
were either partitioned by gene, by codon, or by gene
type (rRNA and tRNA vs. protein coding). Genes were
partitioned individually except in the instances where
two genes overlapped. These regions were partitioned
separately from the individual genes resulting in three
partitions for the two genes: a partition for gene A, a

partition for gene B, and a partition for the overlapping
nucleotides of gene A and B.

Assembly and Phylogenetic Analysis of Nuclear UCEs
Quality filtered raw sequence reads from the UCE-

enriched libraries were assembled into contigs using the
Trinity assembler (Grabherr et al. 2011) with a minimum
kmer coverage of 2. We used Phyluce to identify
those assembled contigs that were UCE loci. We also
harvested UCE loci from E. fuscus (GCA_000308155.1),
Myotis brandtii (GCA_000412655.1), M. davidii
(GCA_000327345.1), and M. lucifugus (GCF_000147115.1)
genome assemblies using the Phyluce package (Faircloth
2016). Once extracted from Trinity and genome
assemblies, we aligned all UCE loci using MAFFT (Katoh
et al. 2002) and trimmed the aligned data with gBlocks
(Castresana 2000). Repetitive sequences (i.e. transpos-
able elements) in each alignment were identified with
RepeatMasker and trimmed where found.

Each alignment was analyzed using three different
partitioning schemes. Unpartitioned alignments were
simply concatenated UCE loci treated as a single unit.
These alignments are referred to herein as “unparti-
tioned.” Fully partitioned alignments were concatenated
alignments mitochondrial genes that were partitioned by
locus. These alignments are referred to herein as “locus
partitioned.” Finally, PartitionFinder v1.1.1 (Lanfear et
al. 2012) was used to combine individual loci into an
optimal partitioning scheme. The combined partition-
ing schemes for each alignment were identified with
PartitionFinder v1.1.1 (Lanfear et al. 2012). Rather than
searching for best-fit substitution models for each locus
or partition, the GTR+� model of sequence evolution
was assigned to all loci (Darriba and Posada 2015)
except in the case of amino acid alignments where the
MtMam model was used. Initial trees for PartitionFinder
were generated using RAxML v7.4.1 (Stamatakis 2006)
with linked branch lengths. Partitioning schemes were
heuristically searched using the hcluster algorithm.
Partitioning schemes were chosen using the Bayeisan
information criterion.

Finally, each alignment and partitioning scheme
was analyzed using Bayesian inference and maximum
likelihood phylogenetic methods. Bayesian phylogenies
were generated with the MPI version of ExaBayes
(v1.4.1) using 4 independent runs of 4 chains each.
ExaBayes runs were terminated after 10 million gen-
erations only if the average standard deviation of
split frequencies was less than 0.01. The first 25%
of samples were discarded after which every 1000th
generation was sampled. Proper sampling, post burn-in
was inspected via Tracer v1.6. (Rambaut and Drum-
mond 2014) and effective sample sizes greater than 200
were considered acceptable. Posterior probability values
greater than 95% were considered to be significant.
RaxML (v8.1.3) was used to estimate and score the
maximum likelihood phylogeny with the rapid boot-
strapping option and 10,000 bootstrap replicates. We
define strongly supported bipartitions as those present
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in 95–100% of bootstrap replicates and moderately sup-
ported bipartitions are present in 85–95% of bipartitions
(Wiens et al. 2008).

Alignment types.—Different combinations of
UCE loci were used to create unique matrices
based on 1) locus distribution, 2) locus length,
or 3) random locus sampling. The first set of
alignments (locus distribution) was determined by
the number of taxa represented in the UCE alignments
(phyluce_align_get_only_loci_with_min_taxa; Faircloth
2016), or degree of completeness. Matrices were
constructed using loci which were present in 100%
(number of specimens, n=37), 95% (n=35), 85%
(n=31), 75% (n=27), 65% (n=24), 55% (n=20),
45% (n=16), 35% (n=12), 25% (n=9), and 15%
(n=5) of specimens examined. These 10 groups were
nonexclusive, so a locus that was assembled in all
specimens (100% complete) would also be included
with loci present in only 55% of specimens. On the
other hand, a locus found in only 55% of specimens
would not be included in the 100% complete data
set. Each set of UCE alignments was concatenated
using phyluce_align_format_nexus_files_for_raxml
and a nexus character block was created using the
phyluce_align_format_nexus_files_for_raxml—charsets
option. These data sets then served as the basis for
downstream phylogenetic analyses. For example, when
a partitioning methodology (discussed below) was
tested, it was performed for each of the 100%, 95%, 85%,
etc. alignments. In addition to partitioning schemes, the
effect of missing data was examined using Bayesian and
maximum likelihood methods.

The second alignment criterion combined UCE loci
of similar sizes. Pervious coalescent analyses of UCE
data showed that subsampling the most informative
loci can result in different topologies (Meiklejohn et
al. 2016). Rather than using coalescent based analyses,
we used concatenation of UCE loci to identify different
topologies based on length. Under these assumptions,
UCE loci were sorted into 10 groups based on their
length and the predicted correlation between length
and number of informative characters was confirmed
(Supplementary Material Fig. 1 available on Dryad at
http://dx.doi.org/10.5061/dryad.5g205). UCE loci in
the same size cohort were combined into a single
alignment, partitioned by locus, and analyzed with
RAxML using the methods described below.

The final set of alignments was generated by random
sampling of UCE loci. In large phylogenetic analyses,
systematic error can result in highly supported, but
incorrect topologies due to compounding of nonphylo-
genetic signal (Rodríguez-Ezpeleta et al. 2007). By
randomly reducing the data set and replicating the max-
imum likelihood analyses, we can reduce the potential
effects of compounding error. Roughly 10% of the data
set, 365 loci, were randomly sampled, concatenated, and
partitioned by locus to create 100 new alignments, which
were then analyzed with RAxML using the methods
described below.

Partitioning strategies.—Alignments were analyzed
using three different partitioning schemes—single,
locus, and combined—similar to the mitochondrial
partitioning schemes described above. Unpartitioned
alignments were simply concatenated UCE loci treated
as a single-genetic unit. Rather than searching for best-fit
substitution models for each UCE locus or partition, the
GTR+� model of sequence evolution was assigned to all
loci (Darriba et al. 2015). Initial trees for PartitionFinder
were generated using RAxML v7.4.1 (Stamatakis 2006)
with linked branch lengths. Partitioning schemes were
heuristically searched using the hcluster algorithm
and the best scheme was chosen using the Bayesian
information criterion.

Inference methods.—Phylogenetic trees were generated
with three different phylogenetic inference methods
across five different inference implementations includ-
ing concatenation and summary tree methods.

Maximum likelihood trees were inferred for each
alignment and partitioning combination using RAxML
v8.1.3 (Aberer et al. 2014). The best scoring (lowest -
lnL) tree from each data set was identified from 100
random starting trees and bootstrapped 100 times using
the GTR+� in both cases. The autoMRE function in
RAxML v8.1.3 was used to determine the need for
additional bootstrap replicates beyond the initial 100
(Pattengale et al. 2009). A stopping criterion was set a
priori if the weighted Robinson–Foulds distance was less
than 5% in 95% of random permutations of computed
bootstrap replicates (Pattengale et al. 2009). If necessary,
an additional 100 bootstrap replicates were computed
until the convergence stopping criteria were met. Finally,
bipartition frequencies of bootstrap replicates were
drawn onto the best scoring tree from the initial
RAxML searches for each of the respective data sets.
Alignments based on UCE length or randomly sampled
were analyzed using slightly different methods. In both
cases UCE loci were partitioned individually and nodal
support was calculated using 100 bootstrap replicates
using the RAxML fast-bootstrapping option. For all max-
imum likelihood analyses, we define strongly supported
bipartitions as those present in 95–100% of bootstrap
replicates and moderately supported bipartitions are
present in 85–95% of bipartitions (Wiens et al. 2008).

Bayesian analyses were conducted using ExaBayes
v1.4.1 (Aberer et al. 2014). For all Bayesian analyses
four independent runs of four chains each were run
in parallel for a minimum of one million generations
sampling every thousandth generation and applying
a GTR+� substitution model for each partition. After
one million generations, analyses continued until the
standard deviation of the split frequency between chains
was less than 0.01. The “-M 3” option was used to reduce
the memory footprint of all ExaBayes runs. Proper
sampling, post burn-in, was inspected via Tracer v1.6.
(Rambaut et al. 2014). Effective sample sizes greater than
200 were considered acceptable. Posterior probability
values greater than 95% were considered significant.
An extended majority rule consensus tree was created
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from all trees after the first 25% of trees were discarded
using TreeAnnotator v1.7.0 (Rambaut et al. 2013) and
parameter estimates across all runs were calculated with
Tracer v1.6 (Rambaut et al. 2014).

Species trees were calculated from gene trees for
individual UCE loci recovered in five or more taxa using
the GTR+� substitution model and fast bootstrapping
(-f a) option in RAxML and 1000 bootstrap replicates. In
general, gene trees were classified based on the degree
of completeness (i.e. number of taxa represented) similar
to the way we treated individuals as described above.

Species trees were estimated and bootstrapped using
three different programs. ASTRAL-II v4.10 (Mirarab et
al. 2015) was used to build a summary tree. Support
values for bipartitions in the tree were generated from
100 bootstrap replicates using site as well as site and locus
resampling (Seo 2008). Species trees were estimated from
ASTRID v1.4 (Vachaspati et al. 2015) using bionj and
bootstrapped for 100 replicates. SVDquartets (Chifman
et al. 2014), as implemented in PAUP v4.0a150 (Swofford
2003), was used to estimate a species trees from a random
subset of 200,000 quartets and 1000 bootstrap replicates.

UCE loci are relatively short markers with few
informative characters from which to build gene trees.
Errors in gene tree estimation may reduce the accur-
acy of summary methods and phylogenetic inference
(Liu et al. 2009, Leaché Rannala 2011, DeGiorgio and
Degnan 2014, Mirarab et al. 2016). We used weighted
and unweighted statistical binning to combine genes
into compatible supergenes, increasing the number of
informative characters per “locus” and reducing the
phylogenetic error (Mirarab et al. 2014, Bayzid et al.
2015). The gene trees used for the summary tree methods
described above were used rather than re-estimating
trees. Bifurcations supported by more than 50% of the
bootstrap replicates were retained for each gene tree.
Alignments from compatible trees were concatenated
into a single-supergene alignment. Trees for supergenes
were estimated using RAxML. The best trees for each
supergene, as defined by log likelihood score, were
retained from 500 searches. Bipartition support was
estimated from 500 bootstrap replicates. For all analyses,
the GTR+� model of substitution was used and each
gene in the supergene alignment was partitioned separ-
ately. The resulting supertrees were then used for species
tree estimation using ASTRAL-II. For the unweighted
analysis, all supertrees were included in the pool of trees.
For the weighted analysis, supertrees were weighted
according to the number of genes combined in the
supergene alignment. For example, if a supergene was
a composite of six genes, the supertree was present six
times compared with a composite of five genes which
would be represented only five times. Support for the
weighted and unweighted species trees was estimated
by site and locus resampling (Seo 2008) for 100 bootstrap
replicates in ASTRAL-II.

Topological comparisons.—Trees recovered from all
analyses were compared with each other in order to
quantify the differences between topologies. Branch
lengths have different meanings based on the type of

analysis. For example, ASTRAL-II branch lengths are
representative of coalescent units and ASTRID does not
calculate branch lengths. For accurate tree comparisons,
branch lengths were stripped from all trees. Pairwise
unweighted Robinson–Foulds distances were calcu-
lated among all trees. Robinson–Foulds distances were
transformed into two dimensions using the stochastic
CCA algorithm for nonlinear dimension reduction in
TreeScaper v1.09 (Huang et al. 2016). Coordinates were
then visualized in R using hexagonal binning in the
hexbin library v1.27.1 (Lewin-Koh 2011). Nuclear and
mitochondrial 50% majority rule consensus trees were
generated with PAUP v4.0a150 (Swofford 2003).
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